A cylinder and a wedge of same mass (m) with a vertical face, touching each other, move along two smooth inclined planes forming an angle and respectively with horizontal as shown in the figure. Determine the force of normal N (In newton) exerted by the wedge on the cylinder, neglecting the friction between them. Consider $m = \frac{1}{\sqrt{3}} kg$; $\alpha = 60^\circ$; $\beta = 30^\circ$ and $g = 10 m/s^2$.

5

By constrained motion

 $a \cos \beta = b \cos \alpha \cdots (i)$

mgsinβ - N cosβ = ma ··· (ii)

For wedge:

N cosa - mg sina = mb ··· (iii)

From (i), (ii) and (iii), we get

N = 5 newton